Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 915: 170048, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38218472

RESUMO

Solitary bees are often exposed to various pesticides applied for pest control on farmland while providing pollination services to food crops. Increasing evidence suggests that sublethal toxicity of agricultural pesticides affects solitary bees differently than the social bees used to determine regulatory thresholds, such as honey bees and bumblebees. Studies on solitary bees are challenging because of the difficulties in obtaining large numbers of eggs or young larvae for bioassays. Here we show the toxic and sublethal developmental effects of four widely used plant systemic pesticides on the Japanese orchard bee (Osmia cornifrons). Pollen food stores of this solitary bee were treated with different concentrations of three insecticides (acetamiprid, flonicamid, and sulfoxaflor) and a fungicide (dodine). Eggs were transplanted to the treated pollen and larvae were allowed to feed on the pollen stores after egg hatch. The effects of chronic ingestion of contaminated pollen were measured until adult eclosion. This year-long study revealed that chronic exposure to all tested pesticides delayed larval development and lowered larval and adult body weights. Additionally, exposure to the systemic fungicide resulted in abnormal larval defecation and increased mortality at the pupal stage, indicating potential risk to bees from fungicide exposure. These findings demonstrate potential threats to solitary bees from systemic insecticides and fungicides and will help in making policy decisions to mitigate these effects.


Assuntos
Fungicidas Industriais , Inseticidas , Praguicidas , Abelhas , Animais , Praguicidas/toxicidade , Inseticidas/farmacologia , Fungicidas Industriais/toxicidade , Larva , Pólen
2.
J Chem Ecol ; 48(2): 196-206, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35094210

RESUMO

Local adaptations of host plants to climatic conditions along an elevation gradient can affect insect-plant interactions. Using local accessions sampled from different elevations within South America, plant defense responses and herbivore growth were evaluated on two host plants: a) cherry tomato, Solanum lycopersicum var. cerasiforme, and b) wild tomato, Solanum pimpinellifolium. The elevational origin of the accessions ranged from 100 to 3000 m above sea level. We hypothesized a higher level of defensive compounds in plants originating from lower elevations and, consequently, stronger resistance to insect herbivory. Interestingly, plant resistance to insect herbivory, as demonstrated by a reduction in Helicoverpa zea growth, was stronger for middle and high-elevation accessions. Total phenolic content increased with elevation in both herbivore-damaged and undamaged leaves, augmenting plant resistance. However, an elevational gradient was not evident for plant defensive proteins (polyphenol oxidase and trypsin protease inhibitors) or the density of leaf trichomes. Tradeoffs between constitutive and induced defenses were evident in both tomato genotypes. Future studies should test the role of plasticity in plant defense systems in restricting or facilitating range expansion of insect herbivores with climate change.


Assuntos
Mariposas , Solanum lycopersicum , Animais , Herbivoria , Larva/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Mariposas/fisiologia , Folhas de Planta/metabolismo
3.
Insects ; 12(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34940217

RESUMO

Elevation gradients are used as a proxy to simulate climate change effects. A field study was conducted along an elevational gradient in Nepal to understand the effects of abiotic conditions on agriculturally important insect herbivore populations (tobacco caterpillar: Spodoptera litura, tomato fruit worm: Helicoverpa armigera, and South American leaf miner, Tuta absoluta) and herbivory damage on tomatoes. Elevation ranged from 100 m to 1400 m above sea level, representing different climatic zones where tomatoes are grown. Contrary to our hypothesis, natural herbivore populations and herbivory damage significantly increased at higher elevations. Individual insect species responses were variable. Populations of S. litura and T. absoluta increased at higher elevations, whereas the H. armigera population was highest at the mid-elevational range. Temperature variations with elevation also affected insect catch numbers and the level of plant damage from herbivory. In the context of climate warming, our results demonstrate that the interactive effects of elevation and climatic factors (e.g., temperature) will play an important role in determining the changes in insect pest populations and the extent of crop losses.

4.
J Chem Ecol ; 45(8): 693-707, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31367970

RESUMO

Crop domestication and selective breeding have altered plant defense mechanisms, influencing insect-plant interactions. A reduction in plant resistance/tolerance against herbivory is generally expected in domesticated species, however, limited efforts have been made to compare inducibility of plant defenses between wild and domesticated genotypes. In the present study, the inducibility of several plant defense mechanisms (e.g. defensive chemicals, trichomes, plant volatiles) were investigated, and the performance and preference of the herbivore Helicoverpa zea were measured in three different tomato genotypes; a) wild tomato, Solanum pimpinellifolium L. (accession LA 2093), b) cherry tomato, S. lycopersicum L. var. cerasiforme (accession Matts Wild Cherry), and c) cultivated tomato, S. lycopersicum L. var. Better Boy). Enhanced inducibility of defensive chemicals, trichomes, and plant volatiles in the cultivated tomato, and a higher level of constitutive plant resistance against herbivory in the wild genotype was observed. When comparing the responses of damaged vs. undamaged leaves, the percent reduction in larval growth was higher on damaged leaves from cultivated tomato, suggesting a higher induced resistance compared to other two genotypes. While all tomato genotypes exhibited increased volatile organic compound (VOCs) emissions in response to herbivory, the cultivated variety responded with generally higher levels of VOCs. Differences in VOC patterns may have influenced the ovipositional preferences, as H. zea female moths significantly preferred laying eggs on the cultivated versus the wild tomato genotypes. Selection of traits during domestication and selective breeding could alter allocation of resources, where plants selected for higher yield performance would allocate resources to defense only when attacked.


Assuntos
Mariposas/fisiologia , Solanum lycopersicum/química , Solanum/química , Animais , Comportamento Animal/efeitos dos fármacos , Catecol Oxidase/metabolismo , Feminino , Genótipo , Herbivoria , Larva/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Oviposição/efeitos dos fármacos , Fenóis/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Proteínas de Plantas/análise , Análise de Componente Principal , Inibidores de Proteases/química , Solanum/genética , Solanum/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia
5.
PLoS One ; 8(9): e72587, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039783

RESUMO

The topical toxicities of five commercial grade pesticides commonly sprayed in apple orchards were estimated on adult worker honey bees, Apis mellifera (L.) (Hymenoptera: Apidae) and Japanese orchard bees, Osmia cornifrons (Radoszkowski) (Hymenoptera: Megachilidae). The pesticides were acetamiprid (Assail 30SG), λ-cyhalothrin (Warrior II), dimethoate (Dimethoate 4EC), phosmet (Imidan 70W), and imidacloprid (Provado 1.6F). At least 5 doses of each chemical, diluted in distilled water, were applied to freshly-eclosed adult bees. Mortality was assessed after 48 hr. Dose-mortality regressions were analyzed by probit analysis to test the hypotheses of parallelism and equality by likelihood ratio tests. For A. mellifera, the decreasing order of toxicity at LD50 was imidacloprid, λ-cyhalothrin, dimethoate, phosmet, and acetamiprid. For O. cornifrons, the decreasing order of toxicity at LD50 was dimethoate, λ-cyhalothrin, imidacloprid, acetamiprid, and phosmet. Interaction of imidacloprid or acetamiprid with the fungicide fenbuconazole (Indar 2F) was also tested in a 1∶1 proportion for each species. Estimates of response parameters for each mixture component applied to each species were compared with dose-response data for each mixture in statistical tests of the hypothesis of independent joint action. For each mixture, the interaction of fenbuconazole (a material non-toxic to both species) was significant and positive along the entire line for the pesticide. Our results clearly show that responses of A. mellifera cannot be extrapolated to responses of O.cornifrons, and that synergism of neonicotinoid insecticides and fungicides occurs using formulated product in mixtures as they are commonly applied in apple orchards.


Assuntos
Abelhas/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Inseticidas/farmacologia , Malus , Piridinas/farmacologia , Animais , Dimetoato/farmacologia , Sinergismo Farmacológico , Imidazóis/farmacologia , Dose Letal Mediana , Neonicotinoides , Nitrilas/farmacologia , Nitrocompostos/farmacologia , Fosmet/farmacologia , Piretrinas/farmacologia , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA